일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- it
- 백트레이더
- Bitcoin
- 확률
- AWS
- 자동매매
- 토플 라이팅
- 개발자
- python
- 퀀트
- AUTOSAR
- 오토사
- 파이썬
- GeorgiaTech
- can
- probability
- 토플
- 비트코인
- Cloud
- backtrader
- TOEFL
- 백테스트
- 아마존 웹 서비스
- 프로그래밍
- backtest
- toefl writing
- 클라우드
- 암호화폐
- 블록체인
- 자동차sw
- Today
- Total
목록correlation (4)
Leo's Garage
Some Useful Covariance / Correlation Theorems Var(X + Y) = E[(X + Y)^2] - (E[X + Y])^2를 이용해서 전개할 수 있다. 기본적으로 각 RV 자체의 Variance를 구하고, 서로 다른 두 RV간의 Covariance도 계산하여 더한다. 기본저적으로 Var(X) + Var(Y) + 2Cov(X,Y)를 n개로 확장 전개한 것으로 이해하면된다. Cov 내에 각 RV의 비례상수의 경우 Cov 계산 시 밖으로 빼서 곱할 수 있다. n개의 RV에 대한 Variance를 계산할 때도 위와 같이 응용할 수 있다.
A Couple of Worked Correlation Examples
Correlation and Causation 이게 무슨 말일까? Correlation과 인과율은 서로 따라오는 관계는 아니라는 의미이다. 시사하는 바는 Correlation과 Causality는 반드시 필요로 하는 것은 아니라는 점이다.
Covariance and Correlation Covariance는 의미에서 보다시피 번역하면 "공분산"이다. 이전에 학습했듯이 Var(X) = E[(X - u)^2]이다. 따라서 Cov(X,X) = E[(X - E[X])^2] = Var(X)이 된다. Cov(X,Y) = E[(X - E[X])(Y - E[Y])]가 된다. 만약에 X와 Y가 독립사건이라면, E[XY] = E[X]E[Y]가 되므로, Covariance는 0이 된다. 즉, X 와 Y가 독립사건이라면 반드시 Covariance가 0이지만 그 역은 성립하지 않을 수 있다는 것이다. Correlation은 차원이 없는 값이다. Covariance를 각 RV의 분산곱의 제곱근으로 나눈값이다. 그 값이 1에 가깝다면 상관관계가 높다는 뜻이고, 0에..