일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 토플
- AUTOSAR
- probability
- 자동매매
- 퀀트
- 오토사
- can
- 토플 라이팅
- 파이썬
- python
- it
- 암호화폐
- 클라우드
- backtrader
- GeorgiaTech
- backtest
- TOEFL
- 백테스트
- 아마존 웹 서비스
- Bitcoin
- 블록체인
- Cloud
- toefl writing
- 개발자
- 자동차sw
- 백트레이더
- 비트코인
- AWS
- 프로그래밍
- 확률
- Today
- Total
목록rv (5)
Leo's Garage
Some Useful Covariance / Correlation Theorems Var(X + Y) = E[(X + Y)^2] - (E[X + Y])^2를 이용해서 전개할 수 있다. 기본적으로 각 RV 자체의 Variance를 구하고, 서로 다른 두 RV간의 Covariance도 계산하여 더한다. 기본저적으로 Var(X) + Var(Y) + 2Cov(X,Y)를 n개로 확장 전개한 것으로 이해하면된다. Cov 내에 각 RV의 비례상수의 경우 Cov 계산 시 밖으로 빼서 곱할 수 있다. n개의 RV에 대한 Variance를 계산할 때도 위와 같이 응용할 수 있다.
Covariance and Correlation Covariance는 의미에서 보다시피 번역하면 "공분산"이다. 이전에 학습했듯이 Var(X) = E[(X - u)^2]이다. 따라서 Cov(X,X) = E[(X - E[X])^2] = Var(X)이 된다. Cov(X,Y) = E[(X - E[X])(Y - E[Y])]가 된다. 만약에 X와 Y가 독립사건이라면, E[XY] = E[X]E[Y]가 되므로, Covariance는 0이 된다. 즉, X 와 Y가 독립사건이라면 반드시 Covariance가 0이지만 그 역은 성립하지 않을 수 있다는 것이다. Correlation은 차원이 없는 값이다. Covariance를 각 RV의 분산곱의 제곱근으로 나눈값이다. 그 값이 1에 가깝다면 상관관계가 높다는 뜻이고, 0에..
Independent Random Variables 독립사건을 다시 상기시켜보자. 독립사건의 정의는 위와 같다. 만약에 두 사건이 독립이면, 조건부 확률은 그 사건의 확률과 동일하다. 자 이제 두 개의 독립적인 RV가 있다고 할 때, 두 RV는 서로 영향을 주지 못한다. 만약에 독립이 아니면 두 RV는 의존적이라고 볼 수 있다. 각각 x와 y에 대한 함수로 분리가 가능하다면 우리는 두 RV가 독립적이라고 볼 수 있을 것 이다. 위의 경우에는 독립적이라고 볼 수 없다. 왜냐면 x와 y로 분리할 수 없기 때문이다.
Functions of a Random Variable 우리가 어떤 확률변수 X에 대한 pmf/pdf를 알고 있다고 하자. 이 때 어떤 확률변수 Y = h(X)에 대한 pmf/pdf를 구해보자. LOTUS를 사용하면 E[h(X)]를 구할 수 있다. 하지만 우리는 단순히 기댓값을 구하려는 것이 아니라 h(x)의 전체 분포를 얻고자 하는 것이다. pdf의 경우는 아래와 같다. pmf case 는 아래와 같다.
RV : Random Variable (랜덤 변수, 확률 변수) Definition: A random variable (RV) is a function from the sample space to the real line X : S -> R. Example : Flip 2 coins. S = {HH, HT, TH, TT}. X(TT) = 0, X(HT) = X(TH) = 1, X(HH) = 2. P(X = 0) = 1/4, P(X = 1) = 1/2, P(X = 2) = 1/4 Random이란 RV { x1 < X < x2} 는 실험 시행 전 표본 공간 내 가능한 실험 결과 중 임의의 값 Variable이란 RV가 어떤 값을 취하느냐가 '확률적으로 결정되는 변수'를 의미한다. 즉, RV는 함수의 일종인데..