
Double Expectation 조건부 기댓값의 기댓값이 기댓값이다. 이게 무슨 말일까? 실제로 조건부 기댓값을 h(X)로 치환하고 LOTUS를 이용하여 기댓값을 계산해보면 원래의 기댓값이 나온다. 핵심은 조건부 확률을 치환할 수 있고, 그 치환된 값을 이용해서 Jointly RV를 만든 뒤에 다시 Marginal Distribution 공식으로 정리할 수 있다는 것이다. 조건부 기댓값은 f(x,y)/fx(X)로 치환한 뒤 y를 곱하고, y의 범위인 x^2부터 1까지 적분을 통해서 구할 수 있다. 해법 1의 경우에는 기존에 방식대로 기댓값을 구하는 과정이며, 해법2는 위에서 말한 것과 같이 조건부 기댓값의 기댓값을 구하여 값을 얻어내는 과정이다.

Conditional Expectation 위의 예시는 X가 어떤 x일 때의 Y의 조건부 기댓값을 표현한 것이다. 위의 경우, 일반적인 Y의 기댓값이다. 따라서 Y가 각 조건일 경우 X에 관계없이 확률을 전부 더한 뒤 계산한다. 하지만 조건부 기댓값은 그 계산이 다르다. 우선 f(y|x=3)의 Conditional Random Variable을 다시 계산 한 뒤에 그 기댓값을 게산해야 한다. 연속 확률 변수에서는 위와 같이 계산할 수 있다.

Random Samples 이러한 Random Sample을 IID(Independent and Identically distributed)라고 한다. Random Sample은 결국 Random Variable의 일종이라고 볼 수 있다. Sample mean은 이러한 Random Sample n개를 더한 뒤에 n으로 나눈 값이다. 이 값은 Random Variable의 평균과 동일하다. 그렇다면 분산은 어떨까? Sample Variance는 Variance보다 작아진다. 이것을 우리는 "큰 수의 법칙"이라고 하며, 좀 더 많은 시행을 할 수록 어떤 기댓값에 가까워진다는 것을 의미한다. 가령 6면 주사위를 10번 던질 때와 100000번 던질 때, 각 숫자가 나올 확률은 1/6을 향해 가까워지지 않는가.

Independent Random Variables 독립사건을 다시 상기시켜보자. 독립사건의 정의는 위와 같다. 만약에 두 사건이 독립이면, 조건부 확률은 그 사건의 확률과 동일하다. 자 이제 두 개의 독립적인 RV가 있다고 할 때, 두 RV는 서로 영향을 주지 못한다. 만약에 독립이 아니면 두 RV는 의존적이라고 볼 수 있다. 각각 x와 y에 대한 함수로 분리가 가능하다면 우리는 두 RV가 독립적이라고 볼 수 있을 것 이다. 위의 경우에는 독립적이라고 볼 수 없다. 왜냐면 x와 y로 분리할 수 없기 때문이다.

Conditional Distributions 조건부 확률을 다시 기억해보자. P(A|B)는 사건 B가 일어났을 때, 사건 A와 B의 교집합이 일어날 확률을 의미한다. 이와 동일하게 생각해보면, Jointly discrete RV 간에 관계에서도 이를 적용할 수 있다. f(y|x) = f(x,y) / fx(x) 이다. 이 관계식을 이용하면 f(x,y) = fx(x) * f(y|x)이다. 그리고 fy(y) 는 f(x,y)를 x 전체에 대해 적분하면 구할 수 있다.

Inverse Transform Theorem Inverse Transform이란 먼저 cdf를 구한 다음에 역변환을 취하고, 이때 역변환 인자로 Unif[0,1] 값을 넣는 것을 의미한다. 이러한 단계를 통해서 해당 확률밀도함수(pdf)를 따르는 확률 표본을 추출할 수 있다. 이러한 역변환의 일반화 방법은 다음과 같다. 1. cdf Y = Fx(X)는 Unif[0,1] 균등분포를 따르게 된다. 2. 이런 성질을 이용하여 역함수 Fx^-1(Y) = X가 되고 3. Unif[0,1]을 대입시키게 되면 Fx^-1(U)로 부터 X 표본을 추출할 수 있다.
- Total
- Today
- Yesterday
- 클라우드
- 블록체인
- GeorgiaTech
- 토플 라이팅
- TOEFL
- 비트코인
- backtrader
- 아마존 웹 서비스
- 백트레이더
- 자동차sw
- 오토사
- python
- 임베디드
- can
- 프로그래밍
- Cloud
- 자동매매
- 토플
- probability
- 개발자
- 퀀트
- 확률
- 실시간시스템
- 파이썬
- 암호화폐
- AWS
- toefl writing
- realtimesystem
- AUTOSAR
- it
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |